VI. SUPPLEMENTAL MATERIALS: EXTRA TABLES AND FIGURES

TABLE IV: Main attributes shared by the implemented Transformer decoders in Section III.

Attr.	Description	Value
T_{tgt}	target sequence length	1,024
$T_{\rm mem}$	Transformer-XL memory length	1,024
L	# self-attention layers	12
$n_{\rm head}$	# self-attention heads	10
d_{e}	token embedding dimension	320
d	hidden state dimension	640
$d_{ m ff}$	feed-forward dimension	2,048
$d_{ m c}$	condition embedding dimension	512
# params	58.7~6	52.6 mil.

TABLE V: Main attributes of our MuseMorphose model.

Attr.	Description	Value
T	target sequence length	1,280
L	# self-attention layers	24
L_{enc}	# encoder self-attention layers	12
L_{dec}	# decoder self-attention layers	12
$n_{\rm head}$	# self-attention heads	8
d_{e}	token embedding dimension	512
d	hidden state dimension	512
$d_{ m ff}$	feed-forward dimension	2,048
$d_{\boldsymbol{z}}$	latent condition dimension	128
$d_{\boldsymbol{a}}$	attribute embedding dimension (each)	64
# params	_	79.4 mil.

TABLE VI: The vocabulary used to represent songs in *LPD*-17-cleansed dataset, which is adopted in Section III.

Event type	Description	# tokens
BAR	beginning of a new bar	1
SUB-BEAT	position in a bar, in 32nd note steps (\mathbf{J})	32
Tempo	$32\sim224$ bpm, in steps of 3 bpm	64
Pitch*	MIDI note numbers (pitch) $0 \sim 127$	1,757
VELOCITY*	MIDI velocities 3~127	544
DURATION*	multiples (1 \sim 64 times) of \clubsuit	1,042
All events	_	3,440

*: unique for each of the 17 tracks (instruments)

TABLE VII: The vocabulary used to represent piano songs in *AILabs.tw-Pop1K7* dataset, on which *MuseMorphose* (see Section IV) is trained.

Event type	Description	# tokens
BAR	beginning of a new bar	1
SUB-BEAT	position in a bar, in 16th note steps ()	16
Tempo	$32\sim224$ bpm, in steps of 3 or 6 bpm	54
Рітсн	MIDI note numbers (pitch) 22~107	86
VELOCITY	MIDI velocities 40~86	24
DURATION	multiples (1 \sim 16 times) of \clubsuit	16
CHORD	chord markings (root & quality)	133
All events	_	330

Fig. 6: Training dynamics of *pre-attention* and *in-attention* Transformers on *LPD-17-cleansed* dataset from the 20th epoch onwards (best viewed in color).

Fig. 7: Evaluation on MuseMorphose's generations of different lengths. (Y-axis for "Fluency" and "Diversity" plots are inverted since these two metrics are the lower the better; shaded regions indicate ± 1 std from the mean. Best viewed in color.)

(a) On controlling **rhythmic intensity** (*x*-axis: user-specified \tilde{a}^{rhym} ; *y*-axis: s^{rhym} (left), s^{poly} (right) computed from the resulting generations; error bands indicate ± 1 std from the mean).

(b) On controlling **polyphony** (*x*-axis: user-specified \tilde{a}^{poly} ; *y*-axis: s^{rhym} (left), s^{poly} (right) computed from the resulting generations; shaded regions indicate ± 1 std from the mean).

Fig. 8: Comparison of the models on attribute controllability. We desire both a high correlation ρ_a and a low $|\rho_{a'|a}|$, where a is the attribute in question, while a' is not.